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PART I. THE EIGENVALUES 

I. Purpose. To compare those methods for computing the eigenvalues of a real 
symmetric matrix for which programs are readily available. The comparison was 
made on the basis of computing time and accuracy. 

II. Methods Tested. Three codes were selected from SHARE which represented 
three different methods. 

A. Jacobi. SHARE distribution 705 by MIT computing lab (FORTRAN). 
This is the original version of the Jacobi method [1] in which plane rotations are 
used to produce zeros in all off-diagonal positions using the maximum off-diagonal 
element as a pivot at each step. This is probably slower but more accurate than the 
"cserial" version which pivots on the off-diagonal elemenlts in sequence whether or 
not they are large. 

B. Givens. SHARE distribution 664 (AN F202) by the AEC Computing and 
Applied Mathematics Center, NYU (FORTRAN). This is the method devised by 
W. Givens in 1954 at the Oak Ridge National Laboratory [2] in which plane rota- 
tions are used to produce a tri-diagonal matrix with the same eigenvalues as the 
original matrix. The roots of the matrix are computed by the use of Sturm's se- 
quence derived from the tri-diagonal nmatrix. 

C. Householder. SHARE distribution # 1385 (AN 202) by the AEC Computing 
and Applied Mathematics Center, NYU (FORTRAN). This is a variation of the 
Givens method in which the tri-diagonal matrix is produced by an orthogonal 
transformation that does not depend on plane rotations. It is described in detail in 
[3] by J. H. Wilkinson. The Sturm sequences are used as before to obtain the roots 
from the tri-diagonal matrix. 

Series overflow and/or underflow problems occurred in the earlier experiments 
because a scaling device was not incorporated into the codes of methods B and C. 
Both methods were modified to incorporate this feature in the decks used in the 
experiments described below. Modified listings are available from the authors. 

III. Description of the Tests. Nine test matrices were used, eight 32 X 32 and 
one 8 X 8. The eigenvalues of each were computed by all three methods and the 
accuracy and time of computation were compared. The eight 32 X 32 matrices 
were constructed by using a tensor product of five 2 X 2 matrices. This had the 
advantage of being able to generate the test matrices in the machine by inserting 
only five data cards. It was also possible to calculate in a very easy way the correct 
eigenvalues of these matrices. The 8 X 8 matrix was the well-known Rosser matrix 
[4]. 
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For the eight 32 X 32 tensor product matrices, the eigenvalues were also com- 
puted by Jacobi procedures using double precision arithmetic applied to the single 
precision matrices obtained from the tensor product calculations. 

These differed from the exact eigenvalue by less than one in the eighth place. 
This would indicate that no significant rounding takes place in the tensor 

product or normalizing calculations. 

IV. Summary of Results. The table below gives the following data for each of the 
eight tensor product matrices: the Euclidean norm, V/at2; the true maximum 
and minimum eigenvalues; the maximum and average error in the computed 
eigenvalues for each method; the computing time in minutes for each method. In 
the case of the Rosser matrix, all of the true eigenvalues and computed errors in 
eigenvalues are given together with the computation times. 

The data indicate that the Householder method is consistently faster and more 
accurate than the Givens method. This is the same conclusion reached by Ortega 
[5] based on more extensive tests. In the Jacobi method the times and accuracies 
are definitely correlated as is to be expected, i.e., the faster the computation, the 
more accurate the result since the fewer number of arithmetic operations produces 
less round off errors. Whenever the computation time for the Jacobi method is less 
than that of the Householder method the results are more accurate. 

The Jacobi times and accuracies vary considerably from one matrix to another 
while the results for the Householder method remain rather uniform. On the aver- 
age the Jacobi times are a little longer and the accuracies a little less than those of 
the Householder method. The results for the Rosser matrix did not differ appreci- 
ably from one method to another. 

The Householder method is definitely better than the Givens and being some- 
what faster and more accurate on the average as well as being more consistent than 
the Jacobi method, it is to be preferred. 

V. Documentation. The following data, codes, etc. were used in the develop- 
ment of the results in these experiments. 

A. The Eight Tensor Product Mlatrices. For each of the eight test matrices, each 
of the five 2 X 2 nmatrices used to form the 32 X 32 tensor product is given together 
with its eigenvalues. 

B. The Correct Eigenvalues of the Eight Tensor Product Matrices. In each of the 
eight cases, the correct eigenvalues were computed by forming the tensor product 
of the eigenvalues of the five 2 X 2 matrices. 

A, B, C, D, and E designate the five pairs of eigenvalues for the five 2 X 2 matrices 
in each case. 

C. Computation of the Eigenvalues of the Eight Tensor Product Matrices by Givens' 
and Jacobi's Methods. The eigenvalues of the eight tensor product matrices are 
computed by Givens' and Jacobi's methods. The input consists of the five 2 X 2 
matrices in each case; each 2 X 2 matrix is on one card consisting of two vectors, 
one for each row. 

D. Computation of the Eigenvalues of the Eight Tensor Product Matrices by 
Householder's Method. This is the same as C, with Householder's method instead of 
Givens' and Jacobi's. 
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E. Computation of the Eigenvalues of the Rosser Matrix by Alt Three Methods. 
The eigenvalues of the Rosser matrix are computed by the three methods. The 
matrix as given on the input cards has eight row vectors. 

F. Prograkn: 32 Eigenvalues fromn Five 2 X 2 Matrices. This is the listing for 
the program that produced the data in B. 

G. Multimethod Eigenvalue Program. This is a listing for the program that 
produced the data in C. The five 2 X 2 matrices for each case are the data. The 
program computes in a subroutine the 32 X 32 tensor product matrix which is 
used as data for each of the eigenvalue computations by Givens' and Jacobi's meth- 
ods which are subroutines in the main program. 

H. Tensor Product. This routine forms the tensor product of N, 2 X 2 matrices 
and is a subroutine in the main program G. 

I. Givens Method. This is the Givens method for computing the eigenvalues of a 
real symmetric matrix. It is written as a subroutine of the main program G. 

J. Jacobi Method. This is the Jacobi method written as a subroutine of the main 
program G. 

K. Householder Method. This is the Householder method written as a subroutine 
for the imain program G. The listing of G as given here does not include this method. 
A revised version was used in which it was added as "method 3." It has also been 
modified from the SHARE version to prevent over- and underflow. 

PART II. THE EIGENVECTORS 

I. Purpose. The purpose was the same as in Part I, except this time both eigen- 
values and eigenvectors were computed and times and accuracies compared. 

I. Methods Tested. The same three programs were used as before. Each pro- 
gram provides a method for the computation of the eigenvectors. The procedure 
in the Jacobi program is the obvious one of computing the product of the rotations. 

In the programs that use the Givens and Householder procedures to obtain the 
tri-diagonal matrix, the same method is used. Wilkinson's method [6] is applied to 
find the eigenvectors of the tri-diagonal matrix, and then the reflections are applied 
in reverse order to obtain the original eigenvectors. 

We shall call the Givens procedure followed by the above Method A and House- 
holder's procedure followed by the above Method B. 

Il. Description of Tests. The same eight tensor product matrices were used 
together with a 21 X 21 matrix which was used by Wilkinson [6] to illustrate how 
catastrophic errors may arise in computing the vectors of a tri-diagonal matrix. 

IV. Summary of Results. Each matrix has 32 vectors corresponding to the 32 
eigenvalues and each vector 32 components for a total of 1024 components per 
matrix. However, the vectors of a tensor product matrix are simply tensor products 
of the vectors of its five 2 X 2 matrices; hence a relatively smaller number of dif- 
ferent magnitudes is really involved. In fact each of the 32 vectors uses exactly the 
same set of numbers for its components and this set varies from 12 to 18 different 
numbers. Thus there are at most 18 different computed numbers involved in the 
1024 components of any matrix. The next table shows the niumber of places of 
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accuracy that are correct in each of the normalized unit vectors all of the time. 
Thus it is the maximum error in a component of a vector except that an occasional 
error in the last accepted place is disregarded. The smaller the number of a vector, 
the larger the magnitude of its eigenvalue. The total computation time is also given 
for each method. Vectors corresponding to multiple eigenvalues are omitted in 
the table since no simple reasonable basis of comparison was known. 

The computation time is less for Method B than for Method A, but the savings 
in time is in the eigenvalue computation and not in the vector part since the two 
methods agree in this part. Thus the percentage time saving is less for the entire 
computation than for the eigenvalue computation alone. The accuracy in the vector 
computation is essentially the same even though the Method B vectors are based on 
slightly more accurate eigenvalues. The vectors corresponding to the middle valued 
eigenvalues are more accurate than those at the two ends. This is characteristic of 
the method used and the distribution of the eigenvalues of the matrices used. 

Comparing Method B with the Jacobi computations, we find a reversal of the 
results for the eigenvalues. Although the times are longer for the Jacobi method 
(.29 on the average compared with .22 for Method B), the vectors are significantly 
better in almost all cases. Furthermore, the Jacobi vectors are uniformly good 
regardless of the magnitude of the corresponding value and only vary from 6 to 7 
places of accuracy depending on the speed of computation. These results led to the 
consideration of one more matrix-the one referred to in [6]. 

This matrix was invented to illustrate how very significant errors may result 
from the calculation of the eigenvectors in the A or B Method if extreme care is not 
taken. 

10 1 
1 9 1 

1 8 

The matrix is the 
tri-diagonal one 1 0 1 

-9 1 
1 -10I 

The eigelnvalues occur in pairs with equal magnitudes and opposite signs together 
with 0. The corresponding eigenvectors have components with equal magnitudes. 
Wilkinson gives only the maximum eigenvalue and corresponding vector, the com- 
puted values of which are compared in the table below. These data show that the 
Jacobi vectors are definitely better although the A and B Method vectors are much 
better than in the case of the tensor product matrices. Thus the catastrophic errors 
that may occur did not, but the conclusion seems to be that the Jacobi method is 
to be preferred if the vectors are required. 
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WILKINSON MATRIX 

VECTORS CORRESPONDING TO (i) MAX EIGENVALUE 

Component.. . 1 2 3 4 5 | 6 7 

True 1.00000000 .74619419 .30299994 .08590250 .01880748 .00336146 .00050815 

Method A & +1 .74619445 .30300065 .08590426 .01881339 .00338739 0 
Method B -1 .74619422 .30299995 .08590250 .01880748 .00336147 .00050815 

Jacobi +1 .74619402 .30299984 .08590244 .01880746 .00336146 .00050815 
-1 .74619411 .30299992 .08590248 .01880748 .00336146 .00050815 

Component... 8 9 10 11 12 13-21 

True .00006659 .00000771 .00000080 .00000007 .00000001 0 

Method A & 0 0 0 0 0 0 
Method B .00006659 .00000771 .00000080 .00000007 .00000001 0 

Jacobi .00006659 .00000771 .000000801 .00000007 .00000001 0 
same same same same same 0 

V. Documentation. All of the programs are the same as before in which indica- 
tors are set to produce vectors as well as values. 

L. Eigenvectors of all different 2 X 2 matrices involved in any of the eight 
tensor product matrices were computed here. Actually they were redone by hand to 
obtain eight correct digits. 

M. The eigenvectors of the eight tensor product matrices were computed by 
using H. The input consists of five 2 X 2 matrices for each case in which each 
matrix consists of two eigenvectors of the corresponding 2 X 2 matrix for its rows. 
The rows of the tensor product of five such matrices are the vectors of the corre- 
sponding tensor product matrix. 

N. The eigenvalues and vectors are computed by the three methods using C 
set to compute vectors as well as values with the additional subroutine D included. 

0. The eigenvalues and vectors of the Wilkinson matrix given as 21 row vectors 
are computed using the same routine as that used in N. 

Aerospace Corporation 
University of Southern California 
Los Angeles, California 
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